170 research outputs found

    Coastal flooding in Scituate (MA) : A FVCOM study of the 27 December 2010 nor'easter

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 6030–6045, doi:10.1002/2013JC008862.A nested Finite-Volume Coastal Ocean Model (FVCOM) inundation forecast model has been developed for Scituate (MA) as part of the Northeast Coastal Ocean Forecast System (NECOFS). Scituate Harbor is a small coastal lagoon oriented north-south with a narrow entrance (with opposing breakwaters) opening eastward onto Massachusetts Bay and the Gulf of Maine. On 27 December 2010, a classic nor'easter produced a ∼0.9 m high surge, which when added to the ∼1.5 m high tide and seasonal higher mean water level, produced significant inundation in Scituate. The Scituate FVCOM inundation model includes flooding/drying, seawall/breakwater, and wave-current interaction capabilities, and was driven by one-way nesting with NECOFS. Hindcasts of the 27 December nor'easter event were made with two different resolution Scituate FVCOM grids with and without inclusion of wave-current interaction to examine the influence of spatial resolution and model dynamics on the predicted flooding. In all simulations, a wind-driven coastal current flowed southward across the harbor entrance, with an attached separation eddy forming downstream of the northern breakwater and rapid decrease in wave energy entering the harbor. With wave-current interaction, the southward coastal current was strongly enhanced and currents within the separation eddy increased to more than 1 m/s, making it highly nonlinear with large lateral shears. Comparisons of the model water elevation time series with harbor tide station measurements showed that inclusion of wave-current interaction increased the peak model surge by ∼8 cm, in closer agreement with the observed peak.This project was supported by NOAA via the U.S. IOOS Office (Award: NA10NOS0120063 and NA11NOS0120141) and was managed by the Southeastern Universities Research Association. The Scituate FVCOM setup was supported by the NOAA-funded IOOS NERACOOS program for NECOFS and the MIT Sea grant College Program through grant 2012-R/RC-127.2014-05-1

    Impact of current-wave interaction on storm surge simulation : a case study for Hurricane Bob

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 2685–2701, doi:10.1002/jgrc.20207.Hurricane Bob moved up the U.S. east coast and crossed over southern New England and the Gulf of Maine [with peak marine winds up to 54 m/s (100 mph)] on 19–20 August 1991, causing significant damage along the coast and shelf. A 3-D fully wave-current-coupled finite-volume community ocean model system was developed and applied to simulate and examine the coastal ocean responses to Hurricane Bob. Results from process study-oriented experiments showed that the impact of wave-current interaction on surge elevation varied in space and time, more significant over the shelf than inside the inner bays. While sea level change along the coast was mainly driven by the water flux controlled by barotropic dynamics and the vertically integrated highest water transports were essentially the same for cases with and without water stratification, the hurricane-induced wave-current interaction could generate strong vertical current shear in the stratified areas, leading to a strong offshore transport near the bottom and vertical turbulent mixing over the continental shelf. Stratification could also result in a significant difference of water currents around islands where the water is not vertically well mixed.This work was supported by the MIT Sea Grant College Program through grant 2012-R/RC-127 and the NOAA NERACOOS Program funds for NECOFS. The development of the FVCOM system has been supported by the NSF Ocean Sciences Division through grants OCE-0234545, OCE-0227679, OCE-0606928, and OCE- 0712903 and the NSF Office of Polar Programs-Arctic Sciences Division through grants ARC0712903, ARC0732084, ARC0804029, and ARC1203393. C.C.’s contribution was also supported by Shanghai Ocean University International Cooperation Program (A-2302-11-0003), the Program of Science and Technology Commission of Shanghai Municipality (09320503700), and the Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50702).2013-11-3

    Reply to comment on “Current separation and upwelling over the southeast shelf of Vietnam in the South China Sea”

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 118 (2013): 1624, doi:10.1002/jgrc.20114.2013-09-3

    Studies of the Canadian Arctic Archipelago water transport and its relationship to basin-local forcings : results from AO-FVCOM

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 4392–4415, doi:10.1002/2016JC011634.A high-resolution (up to 2 km), unstructured-grid, fully coupled Arctic sea ice-ocean Finite-Volume Community Ocean Model (AO-FVCOM) was employed to simulate the flow and transport through the Canadian Arctic Archipelago (CAA) over the period 1978–2013. The model-simulated CAA outflow flux was in reasonable agreement with the flux estimated based on measurements across Davis Strait, Nares Strait, Lancaster Sound, and Jones Sounds. The model was capable of reproducing the observed interannual variability in Davis Strait and Lancaster Sound. The simulated CAA outflow transport was highly correlated with the along-strait and cross-strait sea surface height (SSH) difference. Compared with the wind forcing, the sea level pressure (SLP) played a dominant role in establishing the SSH difference and the correlation of the CAA outflow with the cross-strait SSH difference can be explained by a simple geostrophic balance. The change in the simulated CAA outflow transport through Davis Strait showed a negative correlation with the net flux through Fram Strait. This correlation was related to the variation of the spatial distribution and intensity of the slope current over the Beaufort Sea and Greenland shelves. The different basin-scale surface forcings can increase the model uncertainty in the CAA outflow flux up to 15%. The daily adjustment of the model elevation to the satellite-derived SSH in the North Atlantic region outside Fram Strait could produce a larger North Atlantic inflow through west Svalbard and weaken the outflow from the Arctic Ocean through east Greenland.NSF Grant Numbers: OCE-1203393, PLR-1203643; National Natural Science Foundation of China Grant Number: 41276197; Shanghai Pujiang Program Grant Number: 12PJ1404100; Shanghai Shuguang Program2016-12-2

    Observational and modeling studies of oceanic responses and feedbacks to typhoons Hato and Mangkhut over the northern shelf of the South China Sea

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Dong, W., Feng, Y., Chen, C., Wu, Z., Xu, D., Li, S., Xu, Q., Wang, L., Beardsley, R. C., Lin, H., Li, R., Chen, J., & Li, J. Observational and modeling studies of oceanic responses and feedbacks to typhoons Hato and Mangkhut over the northern shelf of the South China Sea. Progress in Oceanography, 191, (2021): 102507, https://doi.org/10.1016/j.pocean.2020.102507.Meteorological and oceanic responses to Typhoons Hato and Mangkhut were captured by storm-monitoring network buoys over the northern shelf of the South China Sea. With similar shelf-traversing trajectories, these two typhoons exhibited distinctly different features in storm-induced oceanic mixing and oceanic heat transfer through the air-sea interface. A well-defined cold wake was detected underneath the storm due to a rapid drop in sea surface temperature during the Hato crossing, but not during the Mangkhut crossing. Impacts of oceanic mixing on forming a storm-produced cold wake were associated with the pre-storm condition of water stratification. In addition to oceanic mixing produced through the diffusion process by shear and buoyancy turbulence productions, the short-time scale of mixing suggested convection/overturning may play a critical role in the rapid cooling at the sea surface. The importance of convection/overturning to mixing depended on the duration of atmospheric cooling above the sea surface-the longer the atmospheric cooling, the more significant effect on mixing. Including the oceanic mixed layer (OML) in the WRF model was capable of reproducing the observed storm-induced variations of wind and air pressure, but not the air and sea surface temperatures. Process-oriented numerical experiments with the OML models supported both observational and modeling findings. To simulate the storm-induced mixing in a coupled atmospheric and oceanic model, we need to improve the physics of vertical mixing with non-hydrostatic convection/overturning. Warming over the shelf is projected to have a more energetic influence on future typhoon intensities and trajectories.This work was supported by the National Key Research and Development Programs of China with grant numbers 2018YFC-1406201; 2016YFA-0602700; 2018YFC-1506903; 2018YFC-1406205, and the National Sciences Foundation of China with grant number U1811464. S. Li was supported by the oversea Ph.D. fellowship from the China Scholarship Council (No. 1409010025) and Dr. Chen’s Montgomery Charter Chair graduate education funds at the University of Massachusetts-Dartmouth

    Observed wintertime tidal and subtidal currents over the continental shelf in the northern South China Sea

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 5289–5310, doi:10.1002/2014JC009931.Synthesis analyses were performed to examine characteristics of tidal and subtidal currents at eight mooring sites deployed over the northern South China Sea (NSCS) continental shelf in the 2006–2007 and 2009–2010 winters. Rotary spectra and harmonic analysis results showed that observed tidal currents in the NSCS were dominated by baroclinic diurnal tides with phases varying both vertically and horizontally. This feature was supported by the CC-FVCOM results, which demonstrated that the diurnal tidal flow over this shelf was characterized by baroclinic Kelvin waves with vertical phase differences varying in different flow zones. The northeasterly wind-induced southwestward flow prevailed over the NSCS shelf during winter, with episodic appearances of mesoscale eddies and a bottom-intensified buoyancy-driven slope water intrusion. The moored current records captured a warm-core anticyclonic eddy, which originated from the southwestern coast of Taiwan and propagated southwestward along the slope consistent with a combination of β-plane and topographic Rossby waves. The eddy was surface-intensified with a swirl speed of >50 cm/s and a vertical scale of ∼400 m. In absence of eddies and onshore deep slope water intrusion, the observed southwestward flow was highly coherent with the northeasterly wind stress. Observations did not support the existence of the permanent wintertime South China Sea Warm Current (SCSWC). The definition of SCSWC, which was based mainly on thermal wind calculations with assumed level of no motion at the bottom, needs to be interpreted with caution since the observed circulation over the NSCS shelf in winter included both barotropic and baroclinic components.R. Li was supported by the SOA 908 Special Project Foundation of China (908-01-ST07 and 908-01-BC10), the National High Tech Project Foundation (863) of China (2008AA09A401), the Administrator Foundation of South Branch, SOA (0683). The development of FVCOM was funded by the US NSF Office of Polar Programs through grants ARC0712903, ARC0732084, ARC0804029, and ARC1203393.2015-02-1

    Physical mechanisms for the offshore detachment of the Changjiang Diluted Water in the East China Sea

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C02002, doi:10.1029/2006JC003994.Physical mechanisms for the summertime offshore detachment of the Changjiang Diluted Water (CDW) into the East China Sea are examined using the high-resolution, unstructured-grid, Finite-Volume Coastal Ocean Model (FVCOM). The model results suggest that isolated low salinity water lens detected west of Cheju Island can be formed by (1) a large-scale adjustment of the flow field to the Changjiang discharge and (2) the detachment of anticyclonic eddies as a result of baroclinic instability of the CDW front. Adding the Changjiang discharge intensifies the clockwise vorticity of the subsurface current (originating from the Taiwan Warm Current) flowing along the 50-m isobath and thus drives the low-salinity water in the northern coastal area of the Changjiang mouth offshore over a submerged plateau that extends toward Cheju Island. Given a model horizontal resolution of less than 1.0 km, the CDW front becomes baroclinically unstable and forms a chain of anticyclonic and cyclonic eddies. The offshore detachment of anticyclonic eddies can carry the CDW offshore. This process is enhanced under northward winds as a result of the spatially nonuniform interaction of wind-induced Ekman flow and eddy-generated frontal density currents. Characteristics of the model-predicted eddy field are consistent with previous theoretical studies of baroclinic instability of buoyancy-driven coastal density currents and existing satellite imagery. The plume stability is controlled by the horizontal Ekman number. In the Changjiang, this number is much smaller than the criterion suggested by a theoretical analysis.The development of FVCOM is supported by the Massachusetts Fisheries Institute through NOAA grants DOC/ NOAA/NA04NMF4720332 and DOC/NOAA/NA05NMF4721131 and also the U.S. GLOBEC Northwest Atlantic/Georges Bank program through NSF grants OCE-0234545 and OCE-0227679, NOAA grant NA160P2323 and ONR subcontract grant from Woods Hole Oceanographic Institution. P. Ding is supported by the Chinese National Key Basic Research Project grant 2002CB412403. X. Mao is supported by the National Natural Science Foundation of China (NSFC) grant 40576079

    Grazing weakens competitive interactions between active methanotrophs and nitrifiers modulating greenhouse-gas emissions in grassland soils

    Get PDF
    This work was financially supported by Natural Science Foundation of China (41977033, 41907026, and 41721001), Fundamental Research Funds for the Central Universities (2019QNA6011), National Key Basic Research Program of China (2014CB138801), Shandong Provincial Natural Science Foundation (ZR2019BD032), China Postdoctoral Science Foundation (2020T130387 and 2019M652448). CG-R was funded by a Royal Society University Research Fellowship (UF150571). Special thanks to ChunMei Meng, Yu Luo, and Yan Zheng for their assistance in laboratory analyses.Peer reviewedPublisher PD

    Process modeling studies of physical mechanisms of the formation of an anticyclonic eddy in the central Red Sea

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 1445–1464, doi:10.1002/2013JC009351.Surface drifters released in the central Red Sea during April 2010 detected a well-defined anticyclonic eddy around 23°N. This eddy was ∼45–60 km in radius, with a swirl speed up to ∼0.5 m/s. The eddy feature was also evident in monthly averaged sea surface height fields and in current profiles measured on a cross-isobath, shipboard CTD/ADCP survey around that region. The unstructured-grid, Finite-Volume Community Ocean Model (FVCOM) was configured for the Red Sea and process studies were conducted to establish the conditions necessary for the eddy to form and to establish its robustness. The model was capable of reproducing the observed anticyclonic eddy with the same location and size. Diagnosis of model results suggests that the eddy can be formed in a Red Sea that is subject to seasonally varying buoyancy forcing, with no wind, but that its location and structure are significantly altered by wind forcing, initial distribution of water stratification and southward coastal flow from the upstream area. Momentum analysis indicates that the flow field of the eddy was in geostrophic balance, with the baroclinic pressure gradient forcing about the same order of magnitude as the surface pressure gradient forcing.This project was supported by the King Abdullah University of Science and Technology (KAUST). The development of Global-FVCOM was supported by NSF grants ARC0712903, ARC0732084, ARC0804029 and OCE-1203393. C. Chen’s contributions were also supported by the International Center for Marine Studies at Shanghai Ocean University through the ‘‘Shanghai Universities First-class Disciplines Project.’’ L. Pratt was also supported by National Science Foundation Grant OCE0927017.2014-08-2

    Extratropical storm inundation testbed: Intermodel comparisons in Scituate, Massachusetts: EXTRATROPICAL STORM INUNDATION TESTBED

    Get PDF
    The Integrated Ocean Observing System Super-regional Coastal Modeling Testbed had one objective to evaluate the capabilities of three unstructured-grid fully current-wave coupled ocean models (ADCIRC/SWAN, FVCOM/SWAVE, SELFE/WWM) to simulate extratropical storm-induced inundation in the US northeast coastal region. Scituate Harbor (MA) was chosen as the extratropical storm testbed site, and model simulations were made for the 24-27 May 2005 and 17-20 April 2007 (Patriot's Day Storm) nor'easters. For the same unstructured mesh, meteorological forcing, and initial/boundary conditions, intermodel comparisons were made for tidal elevation, surface waves, sea surface elevation, coastal inundation, currents, and volume transport. All three models showed similar accuracy in tidal simulation and consistency in dynamic responses to storm winds in experiments conducted without and with wave-current interaction. The three models also showed that wave-current interaction could (1) change the current direction from the along-shelf direction to the onshore direction over the northern shelf, enlarging the onshore water transport and (2) intensify an anticyclonic eddy in the harbor entrance and a cyclonic eddy in the harbor interior, which could increase the water transport toward the northern peninsula and the southern end and thus enhance flooding in those areas. The testbed intermodel comparisons suggest that major differences in the performance of the three models were caused primarily by (1) the inclusion of wave-current interaction, due to the different discrete algorithms used to solve the three wave models and compute water-current interaction, (2) the criterions used for the wet-dry point treatment of the flooding/drying process simulation, and (3) bottom friction parameterizations
    corecore